局部哈密顿问题的复杂性 01

原文为:arXiv:quant-ph/0406180

这篇文章挺难读的,但是也很有意思。大概会分成四次把解读更新完,其实原文在大部分地方已经讲的很清楚了,但是一些计算过程可能需要澄清,毕竟文中的证明有些给的实在简洁。

这篇文章主要讨论的问题是 $\text{2-}\large\text{L}\small{\text{OCAL }}\large{\text{H}}\small{\text{AMILTONIAN}}$ 问题的复杂度。作为第一部分这里主要把论文的前四节的比较复杂的证明过了一遍,主要是投影引理和对 Kitaev 构造的重述,虽然还没进入正题但也并不算简单,还是很有仔细研究的价值的。

阅读更多

从 Kolmogorov 复杂度到 Martin Löf 随机性检验(上)

Per Martin-Löf, The Definition of Random Sequences, Information and Control, 9, 602-619(1966)

考虑一个在有限字母表中所有字符串的集合。记字符串 $x = \xi_1\xi_2\dots\xi_n$ 的长度 $l(x) = n$。接下来我们需要考虑的问题是,这个序列有多复杂?

很显然,直观地讲,一个“随机”(我们很快会回到这一点上来)字符串要比一个有规律的字符串复杂地多。同样很直观地,我们可以把一个字符串的复杂度定义为某种“最简单的描述方法的长度”,Kolmogorov 算术复杂度就是从这个视角出发做出的形式化定义。

阅读更多